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Internet Appendix

I. Key formulas

We derive key results. First, start with a set of returns Rt+1 =[r1,t+1 ···rN,t+1]′. The
maximum conditional squared Sharpe ratio is

SR2
t =Et [Rt+1]′Σ−1

R,tEt [Rt+1]. (A1)

I.A Expected conditional squared Sharpe ratio, E[SR2
t ]

If the assets are conditionally uncorrelated, then ΣR,t is diagonal and the formula
becomes

SR2
t =

N∑
i=1

Et [ri,t+1]2

σ2
i,t

, (A2)

where σ2
i is the conditional variance of the return on asset i. Assuming returns are

homoskedastic and taking unconditional expectations we obtain

E
[
SR2

t

]
=

N∑
i=1

E
(
Et [ri,t+1]2

)
σ2
i

. (A3)

Substituting in the identity E
(
Et [ri,t+1]2

)
=E[ri,t+1]2+var(Et [ri,t+1]) we have

E
[
SR2

t

]
=

N∑
i=1

E[ri,t+1]2

σ2
i

+

N∑
i=1

var(Et [ri,t+1])

σ2
i

. (A4)

Using the definition of R-squared, R2
i =1− σ2i

var(Et[ri,t+1])+σ2i
, we obtain

R2
i

1−R2
i

=

var(Et[ri,t+1])
σ2
i

, which can be substituted in to get the formula in the paper:

E[vart(mt+1)]=E
(
SR2

t

)
=
∑
i

E[ri,t+1]2

σ2
i

+
∑
i

(
R2
i

1−R2
i

)
. (A5)

I.B Expected utility
We consider the perspective of an investor with mean-variance utility risk aversion

parameter equal to γ. We maintain the assumption that ΣR,t is diagonal, constant,

and known. Consider two portfolio strategies: (1) the static (s) strategy which
does not use conditioning information and (2) the dynamic (d) strategy which can

condition on µt=Et(Rt+1). The optimal portfolio weights are given by

wt,s=
1

γ
Σ−1
R,tµ (A6)

wt,d=
1

γ
Σ−1
R,tµt (A7)

where µ=E(Rt+1) is the unconditional mean return. The date t expected utility for
the agent under the two strategies are given by

Ut,s=
1

γ
µ′Σ−1µt−

1

2γ
µ′Σ−1µ (A8)

Ut,d=
1

2γ
µ′tΣ

−1µt, (A9)
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where expectations are taken under the same measure. Computing unconditional

expectations we obtain

E[Ut,s]=
1

2γ
µ′Σ−1µ=

1

2γ

∑
i

E[ri,t+1]2

σ2
i

(A10)

E[Ut,d]=
1

2γ
E
[
µ′tΣ

−1µt
]
=

1

2γ

∑
i

E[ri,t+1]2

σ2
i

+
1

2γ

∑
i

(
R2
i

1−R2
i

)
. (A11)

Therefore the “timing” term
∑
i

(
R2
i

1−R2
i

)
exactly captures the increase in average

utility obtained by using conditioning information.

I.C Total R2

Again start with a set of returns Rt+1 =[r1,t+1 ···rN,t+1]′ with arbitrary cross-
correlations. Define the total R2 as

R2
total≡

tr[cov(Et [Ri,t+1])]

tr[cov(Ri,t+1)]
, (A12)

where tr is the trace function. By similarity invariance of trace, this is equal to

R2
total≡

tr[Q′cov(Et [Ri,t+1])Q]

tr[Q′cov(Ri,t+1)Q]
, (A13)

where and Q is any orthogonal matrix (Q′=Q−1). Next assume returns are

homoskedastic, that is, ΣR,t is constant. This leads to the eigendecomposition
ΣR,t=QΛQ′. Denoting PCt+1 =Q′Rt+1 and substituting in we have

R2
total =

tr[cov(Et [PCt+1])]

tr[Λ]+tr[cov(Et [PCt+1])]
, (A14)

where we use cov(PCt+1)=Λ+cov(Et [PCt+1]) and additivity of trace. Next use
R2
i

1−R2
i

=
var(Et[PCi,t+1])

λi
to obtain

R2
total =

K∑
i=1

(
R2
i

1−R2
i

)
λi

λ
, (A15)

where

λ=tr[Λ]+tr[cov(Et [PCt+1])] (A16)

=

K∑
i=1

λi

1−R2
i

≈
∑

λi. (A17)

I.D Number of PCs

Start with prior beliefs on the maximum squared Sharpe ratio E[SR2
t ]≤s? and the

total R2 R2
total≥r?.31 Given these beliefs how many PCs should we include? Under

31 Here we ignore the static component of the Sharpe ratio.
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the view that all included k PCs contribute equally to the total R2, using Equation

(7) and Equation (8), we can equivalently write

r?≤k
(

R2
i

1−R2
i

)
λi

λ
(A18)

s?≥
k∑
i=1

(
R2
i

1−R2
i

)
. (A19)

Note this is analogous to the setup in Kozak et al. (2018) who assume that all
included PCs contribute equally to cross-sectional heterogeneity in expected returns

when determining the number of PCs to include. Combining these expressions we

obtain the final formula:

r?

s?
≤
[

1

k

k∑
i=1

λ

λi

]−1

. (A20)

By inspection, the weaker the factor for a given set of assets the fewer PCs one may
include given prior beliefs.

II. Additional Results

We report supplemental empirical results.

II.A Out-of-sample
Our main out-of-sample analysis uses a sample split where all parameters are

estimated using the first half and used to construct OOS forecasts in the second half
of the data. We consider two alternatives, expanding and rolling window analysis.

For both, the OOS analysis begins on the same date as the main estimation, but

predictive regression coefficients are reestimated each month. For rolling window, we
use a twenty year (240 month) sample. Table A.1 presents results from the alternative

OOS methods. The first row shows the coefficient estimate. The second row shows

asymptotic t-statistics. The third and fourth rows show coefficients estimated from
the first and second half data, respectively. The fifth shows the in-sample R2. The

next three rows give OOS R2 based on split sample, expanding window, and rolling

window analysis. PCs 1 and 4 show remarkable stability of estimated coeffcients and
substantial OOS R2 using all three methods. This stability reflects the precision of

the coefficient estimates documented by the t-statistics. Finally, the last row reports

a reverse OOS R2 where estimation is conducted in the second half of the sample
and we evaluate the performance of the prediction in the first half of the sample.

Here again, PC1 and PC4 have sizable R2. Interestingly, PC3 and PC5 have larger
R2 than in the baseline, while PC2 does poorly, consistent with the instability of

the predictive coefficient across periods. Overall, these various OOS approaches lead

to similar conclusions to our baseline in terms of predictability of the dominant
components.

II.B Finite Sample Bias
The relative lack of Stambaugh-type bias for the PCs may be surprising given that
bias for the aggregate market is large. However, this difference arises for two reasons.
Assuming an AR(1) process for the predictor, Stambaugh (1999) shows that

E
(
β̂−β

)
=cρxyE(ρ̂x−ρx),
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Table A.1
Predicting Dominant Equity Components with BE/ME ratios

MKT PC1 PC2 PC3 PC4 PC5

Own bm Full 0.76 4.32 1.62 1.80 4.86 1.56
(1.24) (4.31) (1.81) (2.01) (3.74) (0.78)

Own bm 1st 1.46 3.77 1.37 2.62 5.66 2.74
Own bm 2nd 2.79 4.91 7.68 2.83 4.31 2.14

R2 Full 0.29 3.96 0.74 0.56 3.59 0.50
Split R2 1.00 4.82 0.97 0.47 3.52 0.55
Expanding R2 -0.53 4.43 -0.32 -0.30 2.59 -1.31
Rolling R2 -0.28 3.04 -0.50 -1.10 2.47 -1.61
Reverse R2 0.09 2.40 -7.30 1.17 2.65 1.62

We report results from predictive regressions of excess market returns and five PCs of
long-short anomaly returns. The market is forecast using the log of the aggregate book-
to-market ratio. The anomaly PCs are forecast using a restricted linear combination of
anomalies’ log book-to-market ratios with weights given by the corresponding eigenvector
of pooled long-short strategy returns. The first row shows the coefficient estimate. The
second row shows asymptotic t-statistics estimated using the method of Newey and West
(1987). The third and fourth rows show coefficients estimated from the first and second
half data, respectively. The fifth shows the in-sample R2. The next three rows give OOS
R2 based on split sample, expanding window, and 240 month rolling window analysis. The
last row reports a reverse OOS R2 where estimation is conducted in the second half of the
sample and performance is measured in the first half.

Table A.2
Stambaugh Bias

MKT PC1 PC2 PC3 PC4 PC5

Persistence 0.87 0.52 0.61 0.53 0.27 0.44
Error correlation -0.84 -0.67 -0.33 -0.34 -0.30 -0.15

The first row reports annualized AR(1) coefficients of bm ratios, estimated from monthly

data
(
ρannual=ρ

12
monthly

)
. The second row reports the contemporaneous correlation of

innovations to returns and bm ratios assuming a VAR(1) data-generating process.

where β̂ is the estimated predictive coefficient, ρxy is the contemporaneous correlation

of innovations to x and y, and ρx is the autocorrelation of x. Marriott and Pope (1954)
show that the bias in ρ̂x is approximately proportional to ρx itself. Hence, the overall

bias in β̂ is proportional to ρxρxy. We empircally estimate these quantities for the

market and the anomaly PC portfolios to help decompose the lower simulated bias
for PCs shown in Table 2.

In the first row of Table A.2 we report annualized AR(1) coefficients estimated by
OLS from monthly data, ρannual=ρ12monthly. Unsurprisingly, they are much smaller
for PCs relative to the aggregate market. By estimating the restricted VAR(1)

assumed in Stambaugh (1999), we obtain estimates of the error correlation, shown
in the second row of Table A.2. The error correlation is also substantially smaller for

the PCs, further reducing the bias in estimated predictive coefficients.

II.C Macro Predictors

It is possible that price ratios are useful return forecasters of anomaly returns, but

their predictive ability is subsumed by standard aggregate return predictors. We
explore this by including the aggregate dividend-to-price ratio (D/P), cyclically-

adjusted earnings-to-price (CAPE), lagged realized volatility, the term premium,
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Table A.3
Including Macro Predictors

MKT PC1 PC2 PC3 PC4 PC5

Baseline 0.76 4.32 1.62 1.80 4.86 1.56
(1.24) (4.31) (1.81) (2.01) (3.74) (0.78)
0.29 3.96 0.74 0.56 3.59 0.50

D/P 1.09 4.17 6.82 3.02 4.48 2.45
(0.50) (4.36) (3.40) (2.49) (3.29) (1.47)
0.30 4.02 4.55 0.83 3.79 0.87

CAPE 1.21 4.31 1.97 2.64 4.44 1.89
(1.42) (4.29) (1.90) (2.96) (3.65) (1.06)
0.39 3.97 0.77 0.87 4.14 0.77

Volatility 0.74 4.57 1.03 1.82 4.88 1.47
(1.17) (4.09) (1.40) (2.05) (3.89) (0.74)
0.48 4.09 2.04 0.84 3.66 0.59

Term Premium 0.82 4.32 1.61 1.79 5.02 1.36
(1.33) (4.24) (1.82) (1.85) (3.60) (0.66)
0.53 4.06 0.74 0.56 3.83 0.58

Corp. Spread 0.68 4.02 1.35 1.77 4.64 1.55
(0.99) (3.38) (1.62) (1.96) (3.57) (0.77)
0.36 4.13 1.42 0.58 4.07 0.52

CAY 0.75 4.30 1.61 1.87 5.19 1.68
(1.25) (4.17) (1.74) (1.78) (4.32) (0.79)
0.57 3.97 0.74 0.57 4.55 0.57

GDP growth 0.69 4.62 1.39 1.81 4.85 1.51
(1.09) (4.36) (1.75) (2.06) (3.78) (0.75)
0.44 4.09 1.55 0.59 3.59 0.70

Sentiment 0.65 4.15 1.88 1.49 3.85 1.80
(1.15) (4.12) (2.40) (1.75) (2.71) (0.89)
0.37 4.06 2.28 1.17 4.62 1.29

We we report the multivariate coefficients, t-statistics on the bm ratios and full sample R2

values. The first row repeats the baseline estimates from Table 2.

corporate bond yield spread, consumption-to-wealth ratio from Lettau and

Ludvigson (2001) (CAY), GDP growth, and aggregate sentiment from Baker and

Wurgler (2006). We include each of these additional predictors one at a time to the
regressions of the market and PC returns on their own bm. In Table A.3 we report
the multivariate coefficients, t-statistics on the bm ratios and full sample R2 values.

The first row repeats the baseline estimates from Table 2. The remaining rows show
that macro variables do not even partially drive out the price ratios when predicting

returns. This is not surprising. Even if we knew the “true” macro variables that
drive time-variation in expected returns, the empirically measured values are likely

extremely noisy since quantities like consumption, wealth, and gdp are not directly

observable. Price ratios, by contrast, are likely much better measured expected return
proxies. Daniel and Moskowitz (2016) find that aggregate market volatility predicts

returns on the momentum portfolio. Among the largest five PCs, we find that market
volatility predicts only PC2, which has a large loading on momentum.
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Figure A.1
Realized and Predicted Return (Part I)
The plot shows realized returns along with full sample and out-of-sample forecasts of
returns on the aggregate market and first five PC portfolios of the fifty anomalies.
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Figure A.1
Realized and Predicted Return (Part II)
The plot shows realized returns along with full sample and out-of-sample forecasts of
returns on the aggregate market and first five PC portfolios of the fifty anomalies.
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II.D Forecast and Realized Returns

Figure A.1 shows realized returns along with full sample and out-of-sample forecasts

of returns on the aggregate market and first five PC portfolios of anomalies.

II.E Anomaly Return Properties

Table A.3 shows annualized mean excess returns on the fifty anomaly long-short

portfolios as well as the underlying characteristic-sorted decile portfolios.
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Table A.3
Part I: Anomaly portfolios mean excess returns, %, annualized

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1

1. Size 6.5 8.5 9.0 9.7 9.4 10.1 9.7 10.5 9.9 9.6 3.1
2. Value (A) 5.8 8.0 9.0 7.6 8.8 9.1 9.0 9.2 9.0 12.2 6.4
3. Gross Profitability 6.0 6.0 6.9 6.4 8.5 7.6 8.2 7.1 7.9 9.8 3.8
4. Value-Profitablity 4.7 6.4 4.9 7.1 9.1 8.6 11.1 11.9 12.1 13.7 9.0
5. F-score 6.9 - - - - - - - - 7.9 1.0
6. Debt Issuance 7.0 - - - - - - - - 8.7 1.7
7. Share Repurchases 7.0 - - - - - - - - 8.4 1.4
8. Net Issuance (A) 3.5 5.8 9.4 8.8 7.8 7.8 7.1 9.1 8.9 11.8 8.3
9. Accruals 5.0 6.7 6.1 7.5 7.8 7.8 8.7 7.7 10.3 9.0 4.0
10. Asset Growth 5.8 7.4 7.9 7.8 8.1 7.7 7.9 9.3 10.6 10.0 4.2
11. Asset Turnover 4.8 7.3 6.8 7.0 8.2 9.1 9.6 7.6 10.2 9.8 5.0
12. Gross Margins 6.9 7.5 8.7 7.7 8.7 7.2 8.1 7.5 6.5 7.5 0.6
13. Earnings/Price 4.6 5.8 7.2 7.9 7.7 7.9 10.4 9.3 9.7 12.3 7.6
14. Cash Flows/Price 5.3 8.1 6.7 8.6 8.7 9.1 8.4 9.7 11.4 11.2 5.9
15. Net Operating Assets 3.8 7.0 7.5 4.5 8.3 8.1 8.5 8.3 9.4 9.1 5.2
16. Investment/Assets 5.2 5.7 8.3 7.0 8.9 7.2 8.1 9.2 9.0 11.0 5.8
17. Investment/Capital 7.0 7.3 6.9 8.0 7.6 9.0 7.8 8.2 9.0 9.9 2.9
18. Investment Growth 5.4 8.7 7.4 7.1 7.0 7.9 8.6 8.4 10.3 9.1 3.7
19. Sales Growth 7.9 7.6 7.9 7.0 8.1 9.1 7.3 8.4 9.3 7.3 -0.5
20. Leverage 6.2 7.3 7.4 10.8 7.9 8.6 9.2 9.2 9.4 8.9 2.7
21. Return on Assets (A) 4.5 8.8 7.9 8.1 7.7 7.6 7.9 8.3 7.1 7.7 3.2
22. Return on Book Equity (A) 6.4 7.3 7.0 8.2 7.0 8.1 7.1 8.0 6.9 8.4 2.0

Columns P1 through P10 show mean annualized returns (in %) on each anomaly portfolio net of risk-free rate. The column P10-P1 lists mean returns
on the strategy which is long portfolio 10 and short portfolio 1. Excess returns on beta arbitrage portfolios are scaled by their respective betas. F-score,
Debt Issuance, and Share Repurchases are binary sorts; therefore only returns on P1 and P10 are reported for these characteristics. Portfolios include
all NYSE, AMEX, and NASDAQ firms; however, the breakpoints use only NYSE firms. Monthly data from January 1974 to December 2017.
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Table A.3
Part II: Anomaly portfolios mean excess returns, %, annualized

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1

23. Sales/Price 5.5 6.7 7.4 8.9 9.5 9.4 9.9 11.4 11.5 13.1 7.7
24. Growth in LTNOA 7.4 6.9 7.1 9.1 6.5 7.8 7.3 8.6 8.6 8.4 1.0
25. Momentum (6m) 9.9 9.6 9.1 9.1 8.3 8.6 7.5 6.1 7.9 11.2 1.3
26. Value-Momentum 6.8 8.6 7.4 8.1 8.9 9.7 10.1 9.1 8.4 11.5 4.7
27. Value-Momentum-Prof. 6.4 8.3 8.2 8.8 7.6 5.9 8.2 9.3 11.9 14.8 8.4
28. Short Interest 7.1 6.6 9.1 9.4 8.7 7.1 7.7 6.5 5.1 5.8 -1.4
29. Momentum (12m) -0.3 5.6 7.0 8.1 6.6 7.4 7.6 9.6 9.4 12.7 13.0
30. Industry Momentum 6.6 6.2 8.5 5.8 8.2 10.4 8.2 7.4 9.6 9.5 2.9
31. Momentum-Reversals 5.6 7.5 8.0 7.6 8.0 9.7 7.8 9.8 9.5 12.5 6.9
32. Long Run Reversals 7.4 7.4 8.2 9.0 8.6 9.0 8.8 9.9 10.6 11.8 4.4
33. Value (M) 6.4 7.0 7.3 7.4 8.7 7.9 9.7 7.8 12.8 12.3 5.9
34. Net Issuance (M) 4.6 6.1 10.8 8.8 9.2 7.7 7.9 8.7 10.6 11.2 6.6
35. Earnings Surprises 5.0 5.2 5.8 7.7 7.4 8.3 7.6 8.0 8.9 11.5 6.4
36. Return on Book Equity (Q) 2.4 6.3 7.4 5.4 6.4 7.1 8.2 8.2 7.8 9.8 7.5
37. Return on Market Equity 1.3 2.2 7.1 6.4 7.8 7.7 8.7 11.1 12.1 15.8 14.4
38. Return on Assets (Q) 2.8 5.3 8.1 7.9 7.9 7.6 8.8 8.1 7.6 8.6 5.8
39. Short-Term Reversals 4.0 5.0 7.2 7.3 7.4 8.5 9.5 9.9 10.3 8.4 4.4
40. Idiosyncratic Volatility 0.9 8.9 11.4 8.5 10.6 9.1 8.3 8.2 7.9 7.5 6.7
41. Beta Arbitrage 3.9 4.0 5.1 7.3 8.6 10.2 11.2 11.8 14.6 17.2 13.3
42. Seasonality 4.0 4.4 6.7 6.3 8.5 7.4 7.9 7.6 9.8 13.2 9.2
43. Industry Rel. Reversals 2.6 4.2 4.9 6.3 6.8 8.2 9.6 11.6 13.3 13.1 10.6
44. Industry Rel. Rev. (L.V.) 1.7 5.2 5.2 6.8 6.6 7.4 9.8 10.8 13.8 15.6 13.9
45. Ind. Mom-Reversals 4.1 5.3 6.2 6.3 8.4 7.9 8.4 9.5 10.4 14.7 10.6
46. Composite Issuance 4.7 6.5 6.6 7.1 8.0 8.0 7.5 8.1 10.3 10.8 6.1
47. Price 6.1 9.5 9.2 10.8 9.2 8.9 7.9 7.9 7.9 6.5 0.5
48. Share Volume 7.2 8.7 7.3 7.6 8.1 6.8 8.4 7.3 6.9 6.8 -0.4
49. Duration 5.4 7.5 9.0 8.3 9.3 10.1 9.8 9.5 11.0 11.8 6.5
50. Firm age 7.0 9.1 6.0 9.8 6.4 8.8 10.0 8.5 7.3 7.7 0.7

A
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Figure A.2
Anomaly SDF Weights
The plot shows implied SDF coefficients on the size, value, momentum and ROA anomaly
portfolios.

Figure A.2 gives the time-series of implied SDF coefficients on the size, value,
momentum and ROA anomaly portfolios.

Figure A.3 shows the annualized unconditional mean return and standard

deviation of conditional mean return on the fifty anomaly portfolios. Unconditional
mean returns are computed as sample average returns. Standard deviation of

conditional mean return are model implied based on the expected returns of five

PC portfolios. The cross-sectional correlation of these two quantities is -20%.

II.F Role of the Rebalancing Frequency
Table A.4 studies the role of the rebalancing frequency for factor timing. To focus

on anomaly timing, we report statistics for the “pure anomaly timing” strategy

which always has zero weight in the market and has zero weight on average in
each of the fifty anomaly portfolios.32 We change portfolio weights on the anomalies

monthly, quarterly, semi-annually, or annually. The first two rows report the Sharpe
ratio and expected utility performance measures. The third row reports portfolio

turnover, which we construct as follows. Given portfolio weights wi,t on anomaly

i at date t, we construct period t turnover as
∑
i |wi,t−wi,t−1|/

∑
i |wi,t−1| which

measures absolute trading scaled by gross exposure.33 We report the average of this
monthly measure over our sample. The last row of Table A.4 reports the correlation of

32 The factor timing strategy has about 25-30% lower turnover at all rebalancing frequencies.

33 Since our portfolios are all zero cost excess returns, the standard definition which divides
by portfolio equity makes little sense in this context.

A11



The Review of Financial Studies / v 0 n 0 0

0 5 10 15 20

Industry Rel. Rev. (L.V.)

Return on Market Equity

Net Issuance (A)

Ind. Mom-Reversals

Composite Issuance

Net Issuance (M)

Beta Arbitrage

Industry Rel. Reversals

Investment/Assets

Momentum (12m)

Value-Momentum-Prof.

Value-Profitablity

Earnings/Price

Seasonality

Idiosyncratic Volatility

Net Operating Assets

Return on Book Equity (Q)

Accruals

Duration

Asset Growth

Sales/Price

Earnings Surprises

Cash Flows/Price

Investment Growth

Value (A)

Share Repurchases

Investment/Capital

Return on Assets (Q)

Momentum-Reversals

Value (M)

Value-Momentum

Return on Assets (A)

Share Volume

Long Run Reversals

Debt Issuance

F-score

Return on Book Equity (A)

Gross Profitability

Industry Momentum

Asset Turnover

Leverage

Size

Short-Term Reversals

Short Interest

Price

Gross Margins

Momentum (6m)

Sales Growth

Growth in LTNOA

Firm age

Figure A.3
Anomaly Expected Returns
The plot shows the annualized unconditional mean return and standard deviation of
conditional mean return on the fifty anomaly portfolios.
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Table A.4
Rebalancing frequency

Monthly Quarterly Semi-annual Annual

Sharpe ratio 0.71 0.72 0.82 0.79
Expected utility 1.26 1.08 0.88 0.81
Turnover 0.41 0.20 0.13 0.08
Correlation 1.00 0.98 0.92 0.88

We report the average unconditional Sharpe ratio, expected utility for a mean-variance
investor, monthly portfolio turnover, and correlation with the monthly strategy with
various rebalancing frequencies. Turnover is measured as the sum of absolute changes in
portfolio weights divided by the sum of absolute initial portfolio weights.

each of the portfolios with the baseline monthly rebalanced return. Interestingly, the
performance of the portfolios does not deteriorate meaningfully. The unconditional

Sharpe ratio actually increases from 0.71 to 0.79 with annual rebalancing. Expected
utility declines from 1.26 to 0.81, still a substantial value. For comparison, the static

factor investing strategy yields an expected utility of 1.66 so even with annual

rebalancing, timing benefits are economically meaningful. The correlation of the
slower strategies with our baseline further confirms that the strategies are not that

different. Even with annual rebalancing the correlation drops to only 0.88, showing

that lowering the rebalancing frequency does not generate substantial tracking error.
The signaling value of the predictors we use is sufficiently persistent to be used

without continuous tracking.

Our anomaly timing strategy has a monthly turnover of 41%. Changing nearly
half of positions each month might seem large, but it is important to remember that

nothing in the construction of our strategy imposes a smooth trading path. The lower

rebalancing frequencies drastically lower the turnover rate down to 8% with annual
rebalancing. It is tempting to conclude that that these strategies are implementable in

practice. Indeed, these numbers are in line with usual trading activity of investment
funds. Griffin and Xu (2009) show that the median hedge fund has 8.5% monthly

turnover and even the median mutual fund has 5% turnover. However, to reach a firm

conclusion in terms of implementability, one would need a clear model of transaction
costs. In addition, the transaction costs would likely depend of the scale at which

the strategies are implemented.

II.G Conditional Variance of the SDF
Figures A.4 and A.5 show conditional variance of SDFs, as well as the relationship

between SDF variance and inflation.

II.H Volatility timing
As discussed in Moreira and Muir (2017), optimal timing strategies rely not only

on estimates of conditional expected returns, but also conditional volatilities. Going

back to our one-asset example at the beginning of Section 3.1, consider the situation
where volatility changes independently from expected returns. Then the average
squared Sharpe ratio becomes

(
E[µt]

2+var[µt]
)(

E
[

1

σt

]2
+var

[
1

σt

])
,

the gains from timing returns and volatility are multiplicative.

In our multivariate setting, we need to construct estimates of ΣZ,t. We proceed
as follows. For each of our five principal components and the market returns, we

compute the realized volatility of daily returns during the previous month. We use
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Figure A.4
Conditional Variance of SDFs
This figure plots the conditional variance of the SDF constructed under various sets of
assumptions. “Factor timing” (solid blue line) is our full estimate, which takes into account
variation in the means of the PCs and the market. “Anomaly timing” (dashed red line)
imposes the assumption of no market timing: the conditional expectation of the market
return is replaced by its unconditional counterpart. Conversely, “Market timing” (starred
yellow line) allows for variation in the mean of the market return, but not the means of
the factors.
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Figure A.5
Variance of the SDF and inflation
This figure plots the conditional variance of the SDF (solid blue line), and inflation rate
over the previous year (dashed rate line). The SDF variance is constructed using the
predictive regressions reported in Table 2. The inflation rate is the annual log change in
the CPI.

these realized variances to create a forecast of the squared monthly prediction errors
in the following month using a simple regression for each return series. These forecasts

constitute the diagonal elements of ΣZ,t. We confirmed that using GARCH(1,1)
volatility forecasts leads to similar conclusions. We further assume that the five
principal components and the market are conditionally orthogonal, and set the off-

diagonal elements to 0.34

34 The five components and the market are unconditionally orthogonal by construction.
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Table A.5
Volatility timing

Means Variances Both

E [vart (mt+1)] 2.96 2.19 3.54

std[vart (mt+1)] 2.17 0.74 2.06

We report the mean and standard deviation of the conditional variance of the SDF based on
three estimates. The first column uses the SDF variance shown in Figure 2 based on return
forecasts in Table 2 and assumes returns are homoskedastic. The second column assumes
returns are not predictable and uses estimates of conditional return variances constructed
from a regression of squared forecast errors on lagged realized variance. The final column
combines both mean and variance forecasting.
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Figure A.6
Conditional Variance of SDFs
This figure plots the model-implied conditional variance of the SDF constructed in three
ways. The solid blue line uses only timing of conditional means but constant variance. The
red dashed line ignores predictability of returns but times variances. The yellow starred
line times both means and variances.

In Section 4.4 we report statistical properties of estimated stochastic discount

factors which incorporate time-varying means, variances, or both. We compute the

mean and standard deviation of the corresponding SDF variances. Figure A.6 shows
the time-series of the conditional SDF variance implied by each of these three

estimates. Examining the two time series, we note that the largest volatility spikes

tend to mitigate the effect of high expected returns on SDF variance. For example this
coincidence occurs during the Internet boom and bust, and also during the financial

crisis of 2008.

III. Statistical Approach

We first discuss an alternative statistical motivation behind our methodology, then

derive some useful statistical properties.

III.A An Alternative Statistical Motivation
Another way to approach our empirical exercise is to look for common sources of

variation in risk premia across base assets or factors. For example, starting from a
vector of candidate predictors Xt, we want to assess their usefulness to forecast the

returns. In a linear setting, this corresponds to studying the vector of coefficients b′i
in the panel regression:

Ri,t+1 =ai+b
′
iXt+εi,t+1, (A21)
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where one can replace Ri,t+1 by Fj,t+1 if focusing on factors. There are multiple ways

to aggregate the information in the estimated coefficients of interest, bi, to judge the
success of Xt as a predictor.

One can ask if Xt predicts “something”: is there a linear combination of the
coefficients b=[b1 ···bn] that is statistically distinct from zero? This corresponds

exactly to a standard Wald test. This notion of predictability, is intuitively too lax.

For instance, our conclusion about the predictive value of Xt could be driven by its
ability to predict only a few assets or the lowest variance PC portfolios. A small

amount of noise in measured returns can lead to significant spurious predictability

of the smallest PC portfolios, even in population. This issue is exacerbated in small
samples.

The other extreme is to ask whether elements of Xt predicts “everything”, or that

all coefficients in a row of b are statistically distinct from zero. For instance Cochrane
and Piazzesi (2005) obtain such a pattern predicting Treasury bond returns of various

maturities using the cross-section of yields, concluding to the presence of a single

common factor in expected returns. While this approach can uncover interesting
patterns, it is likely to be too stringent. We show in Section III.B that such a test

is often equivalent to testing whether Xt predicts the first principal component of
realized returns. In other words, finding uniform predictability across all assets simply

finds predictability of the “level” factor in returns. In contrast, we show in Section

III.C that if a predictor is useful for forecasting index-neutral factor returns, captured
by a long-short portfolio, but not for aggregate returns, individual asset predictive

regressions are unlikely to uncover such predictability.

Our approach strikes a balance between these two extremes by asking whether
Xt predicts the largest principal components of returns. In other words, we focus

on common predictability along the few dimensions explaining a large fraction of

realized returns. Focusing on components with a large explanatory power avoids the
issue of the Wald test. Entertaining multiple dimensions avoids the other extreme of

only focusing on the first component of returns, and allows us to study time-series

predictability of cross-sectional strategies.
Our approach to the predictability of cross-sections of returns is focused on

predicting important dimensions of the data rather than considering regressions at
the individual asset level. In this section, we study more systematically the relation

between predicting important components of returns and predicting individual

returns.
We consider three features that were relevant in our empirical applications

and provide ways to quantify them more generally. First, there is a strong link

between predicting the first principal component of returns and predicting each
individual return. Second, it is difficult to detect predictability of the second or

higher components of returns in individual regressions when the first component is

large. Third, joint tests of significance in individual regressions are susceptible to
picking up small unimportant patterns of predictability.

III.B First Principal Component and Individual Regressions

A common empirical situation is that a family of returns {Ri,t+1}i∈I has a strong

common component Ft+1. When this component is predictable by a variable Xt,
does this imply that the individual returns are predictable by Xt? We answer this
question quantitatively by deriving a series of bounds linking the predictability of

Ft+1 with the individual predictability of asset returns. We first zoom in on one
particular return before considering properties for an entire family of returns.
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One individual return: a purely statistical bound. Define R2
1,i as the

population R-squared of the contemporaneous regression of an individual asset on
the common component,

Ri,t+1 =λiFt+1+εi,t+1, (A22)

and R2
X as the R-squared of the predictive regression of the factor,

Ft+1 =β1Xt+ut+1. (A23)

We are interested in R2
X,i, the R-squared of the predictive regression

Ri,t+1 =biXt+vt+1. (A24)

The following proposition characterizes a lower bound on this quantity.35

Proposition 2. If a variable Xt predicts a factor Ft+1 with R-squared R2
X and

an individual return is explained by this factor with R-squared R2
1,i, then a lower

bound for the R-squared R2
X,i of predicting this return using Xt is given by:

R2
X,i≥max

(√
R2

1,iR
2
X−

√(
1−R2

1,i

)
(1−R2

X),0

)2

. (A25)

Proof. By the definition of a regression R2 we have R2
1,i=

λ2i var(Ft+1)
var(Ri,t+1)

, R2
X =

β21

var(Ft+1)
, and R2

X,i=
b2i

var(Ri,t+1)
. The the linearity of regression we have bi=

λiβ1+cov(Xt,ui,t+1). We can bound the second term in this expression:

|cov(Xt,ui,t+1)|= |corr(Xt,ui,t+1)|
√

var(ui,t+1)

≤
√

1−R2
1,i

√
var(ui,t+1),

where the bound comes from the fact that the correlation matrix of ui,t+1, Ft+1 and

Xt+1 has to be semidefinite positive and therefore have a positive determinant.

If |λiβi|≤
√

1−R2
1,i

√
var(ui,t+1), then 0 is a lower bound for R2

X,i. In the other

case, we obtain the following bound:

R2
X,i≥

(
λiβ1−

√
1−R2

1,ivar(ui,t+1)
)2

var(Ri,t+1)

≥
(√

λ2
iβ

2
1

var(Ri,t+1)
−
√

1−R2
1,i

√
var(ui,t+1)

var(Ri,t+1)

)2

≥
(√

R2
1,iR

2
X−

√(
1−R2

1,i

)
(1−R2

X)

)2

Putting the two cases together gives Equation (A25). �

35 Without loss of generality, we assume that the predictor Xt has unit variance.
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Intuitively, if Xt strongly predicts the common factor, and the factor has high

explanatory power for individual returns, then Xt should predict the individual
returns as well. The bound is indeed increasing in the R-squared of these two steps.

However, it is lower than the product of the two R-squared — a naive guess that
assumes “transitivity” of predictability. This is because the predictor Xt might also

predict the residual εi,t+1 in a way that offsets the predictability coming from the

factor. The orthogonality of Ft+1 and εi,t+1 limits this force, but does not eliminate
it.

To get a quantitative sense of the tightness of this bound, consider the case of

bond returns. The level factor explains about 90% of the variation in individual
returns, and it can be predicted with an R-squared around 25%. Plugging into our

bound, this implies a predictive R-squared of at least 4% for a typical individual

bond return. This is a sizable number, but also much less than the 22.5% implied by
a naive approach.

One individual return: a bound with an economic restriction. One reason
this bound is relatively lax is that it does not take into account the nature of the

variable εi,t+1. Indeed, if, as is the case in our setting, the component Ft+1 is itself
an excess return, the residual εi,t+1 is one too. It is therefore natural to make the

economic assumption that it cannot be “too”’ predictable by the variable Xt. This

corresponds to imposing an upper bound R2
max on the R-squared of the predictive

regression of εi,t+1 by Xt+1.36 In this case, our bound becomes:

R2
X,i≥max

(√
R2

1,iR
2
X−

√
R2

max(1−R2
X),0

)2

. (A26)

Such an approach can considerably tighten the bound. For instance, in our example

for treasuries, one could impose an upper bound of 25% for predicting the residual.

This yields a lower bound on predicting the return Ri,t+1 of 10%, a much larger
number, statistically and economically.

Family of returns: the symmetric case. Another reason that predictability of

the common factor must transmit to predictability of individual returns is that by

design it absorbs common variation across all those returns. To highlight this point,
we consider the following simple symmetric case. We assume that the factor is the

average of all the individual returns, Ft+1 = 1

N

∑
i
Ri,t+1. We further assume that all

assets have the same loading on the factor and the factor has the same explanatory
power for each return. This corresponds to constant λi, and R2

1i across assets. We

then immediately have: ∑
i

ui,t+1 =0

∑
i

cov(Xt,ui,t+1)=0.

36 One way to determine a reasonable bound on R2
max is to note that the standard deviation

of an asset’s conditional Sharpe ratio equals

√
R2
x,i

1−R2
x,i

.
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Letting γi=cov(Xt,ui,t+1) we then obtain an expression for an individual asset:

R2
X,i=

(λiβ1+γi)
2

var(Ri,t+1)

=R2
1R2

X+
γ2
i

var(Ri,t+1)
+2γi

λiβ1

var(Ri,t+1)

Finally, taking averages across assets we have:

Ei
[
R2
X,i

]
=R2

1R2
X+vari

(
R2
X,i

)
, (A27)

where Ei(·) and vari(·) are the mean and variance in the cross section of individual

returns and we use the fact that we use the fact that Ei [γi]=0. This formula implies
that the average explanatory power is now at least as large as given by the transitive

formula. This would correspond to 22.5% in our example, almost the same value as

the predictive R-squared for the common factor. Furthermore, the more unequal this
predictive power is across assets, the stronger it must be on average. That is, if the

variable Xt does less well than the transitive R-squared for some particular returns,

it must compensate more than one-to-one for the other assets.

From predicting “everything” to aggregate returns. Maintaining the same
assumptions, we can rearrange Equation (A27) to see what the predictability of

“everything” implies for predictability of the common factor. We have:

R2
X =

Ei
[
R2
X,i

]
−vari

(
R2
X,i

)
R2

1

.

At first this may not seem very powerful since vari
(
R2
X,i

)
could be large. This

maximal variance, however, is related to the average Ei
[
R2
X,i

]
. Consider the simple

example of only two assets. Then, if the average Ei
[
R2
X,i

]
is 10%, the maximal

variance is only 1%, which obtains when R2
X,1 =0% and R2

X,2 =20%. In general with

two assets we have

vari
(
R2
X,i

)
≤
(
0.5−

∣∣Ei[R2
X,i

]
−0.5

∣∣)2
which gives the bound

R2
X≥

Ei
[
R2
X,i

]
−
(
0.5−

∣∣Ei[R2
X,i

]
−0.5

∣∣)2
R2

1

.

For large N , the Bhatia-Davis inequality gives:

R2
X≥

(1−R2
max)Ei

[
R2
X,i

]
+Ei

[
R2
X,i

]2
R2

1

,

where R2
max, as before, is the maximum R2

X,i from any individual asset forecasting
regression. For reasonable values of R2

max, such as 0.5 or less, the bound implies

that ˜22% average R2 we obtain for individual bonds implies at least 18% R2
X , the

R-squared when predicting the aggregate portfolio return.

III.C Low Power of Individual Tests
While individual regressions are strongly related to predicting the first common
component of returns, they can face challenges in detecting predictability of other
factors. We provide a way to quantify this issue by characterizing the statistical power

of a test of significance for a predictor that only predicts one particular component
of returns. We illustrate this idea in the simple case of an i.i.d. predictor. Simulations

confirm these ideas extend to a situation with persistent predictors.
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I.i.d. predictor. Consider first the case where the forecasting variable Xt+1 has

i.i.d. draws.37 Suppose that Xt forecasts only one particular principal component
j with population R-squared R2

X and the remaining principal component returns

are i.i.d. Gaussian with known mean.38 For power analysis, we consider repeated
samples of length T .39

When directly forecasting the principal component return, Fj,t+1, the power to

correctly reject the null with test of nominal size α is

power(F2)=G(−tα/2,T −z)+[1−G(tα/2,T −z)], (A28)

where G is the CDF of a t-distribution with T degrees of freedom, z=√
R2
X

√
T (1−R2

X)−
1
2 , and tα/2,T is the α

2
critical value from the t-distribution.

In contrast, when directly forecasting an individual return, Ri,t+1, the power is

power(Ri)=G(−tα/2,T −ζ)+(1−G(tα/2,T −ζ)), (A29)

where ζ=
√

R2
X

√
T

(
(1−R2

X)+
1−R2

j,i

R2
ji

)− 1
2

. By symmetry of the t-distribution and

because ζ≤z, we immediately obtain that power(F2) is larger than power(Ri) for

all assets. Therefore, there is always more information about predictability of the
important component by studying it directly.

37 The formulas hereafter admit simple generalizations to multivariate prediction.

38 More generally, the components need not be principal components. They must be
uncorrelated and only one particular component must be forecastable by our predictor. If
the mean is unknown, the results below are unchanged except that the degrees of freedom
are T−1 instead of T .

39 The analysis treats X as stochastic. With fixed X the distribution is normal instead of a
Student t.
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